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Abstract: We present a thin film crystal ion sliced (CIS) LiNbO3 phase modulator that 
demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. 
Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, 
and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. 
Precise index matching between the co-propagating RF and optical modes is responsible for 
the device’s broadband response, which is estimated to extend even beyond 500 GHz. 
Matching the velocities of these co-propagating RF and optical modes is realized by cladding 
the modulator’s interaction region in a thin UV15 polymer layer, which increases the RF 
modal index. The fabricated modulator possesses a tightly confined optical mode, which 
lends itself to a strong interaction between the modulating RF field and the guided optical 
carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm−1. The design, fabrication, 
and characterization of our broadband modulator is presented in this work. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (130.3120) Integrated optics devices; (160.3730) Lithium niobate; (230.4110) Modulators; (230.4000) 
Microstructure fabrication. 
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1. Introduction 

Despite its ubiquity in fiber-optic telecommunications and attractive nonlinear properties, the 
evolution of LiNbO3 integrated optics can be considered sluggish relative to its Si and III-V 
counterparts. Discrete devices fabricated in bulk single crystalline LiNbO3 generally rely on 
low index contrast optical waveguides with large bend radii [1], and specialized 
micromachining processes for sustaining broadband operation [2], which inhibits dense 
integration. Although the first instance of CIS LiNbO3 was reported in 1998 [3], the recent 
widespread availability of full 75 mm wafers of CIS thin film LiNbO3 from a number of 
distributors: NanoLN (China), Partow Industries (Florida), and SRICO (Ohio), has provided a 
fertile environment for LiNbO3 device research and innovation [4,5]. 
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Notable devices that take advantage of the high index contrast provided by a thin LiNbO3 
substrate are tunable ring resonators [6], Mach-Zehnder interferometers [7], switches [8], and 
standalone phase modulators [7,9–11]. Developed in parallel to these are various hybrid 
devices, that rely on either Si [12–17] or Si3N4 [16,18,19] for loading and guiding of an 
optical mode. A common theme among all devices mentioned herein is that they possess a 
reduced mode size. The reduced mode size leads to vastly improved EO activity over their 
bulk predecessors, most notably resulting in reduced half-wave voltages. Reduced half-wave 
voltage length products coupled with the ability to bend and fold the high index contrast 
optical waveguides leads to a substantially decreased device footprint ideal for future 
integrated photonic systems. 

Up to this point however, the other major advantage of thin-film LiNbO3, the significantly 
lower permittivity of the material system, has yet to be convincingly exploited [7,8,11,16]. To 
this end we present the first LiNbO3-based EO modulator that is engineered to perform 
continuously from DC to THz frequencies. It is a device that can be used to optically up-
convert RF signals directly at a system’s RF front-end sensor, or antenna element. In so 
doing, the received RF signal becomes a sideband on an optical carrier that can be 
subsequently processed and, or routed using low loss conventional off-the-shelf optical 
components. A broad range of applications in the THz regime, including sensing [20], 
imaging [21,22], and high data rate communications [23], are currently limited by the 
inherent difficulties in routing THz signals electronically. Given the results presented in this 
work, we propose that optical routing of THz signals can be enabled by an EO up-converting 
modulator to provide both a simple and effective frontend alternative. 

2. Device design and fabrication 

A schematic of the broadband phase modulator’s interaction region can be seen in Fig. 1(c), 
where the devices begin with commercially available CIS thin film LiNbO3 on insulator 
procured from NanoLN. The substrate consists of a 700 nm thick x-cut LiNbO3 device layer, 
affixed to a 500 µm thick quartz handle wafer via a 2 µm thick plasma enhanced chemical 
vapor deposited SiO2 intermediate bonding layer. A single mode rib waveguide sustains the y-
propagating TE polarized light to be modulated. The rib is 1.1 µm wide at the top and 1.8 µm 
wide at its base; the etch depth is 160 nm resulting in a sidewall angle of 24.57 degrees. 
Lumerical FDTD Mode Solver is used to simulate the waveguide structure and provides an 
effective optical group index (nopt) of 2.2608 for the fundamental TE mode at 1550 nm. The 
discrepancy between bulk LiNbO3’s optical indices (nextraordinary = 2.14 and nordinary = 2.21) at a 
wavelength of 1550 nm and the simulated group index stems from structure dependent 
waveguide dispersion and LiNbO3 material dispersion. 

To form the optical waveguide an 80 nm thick chromium blanket layer is first sputtered 
onto the substrate. A soft-mask is patterned on top of the Cr layer with NR9-1500P 
photoresist from Futurrex. The soft-mask pattern is transferred into the Cr hard-mask with a 
time multiplexed Cl based inductively coupled plasma (ICP) dry etch. After pattern transfer, 
any residual resist is removed in an O2 plasma ash. The waveguide pattern is finally 
transferred into the LiNbO3 with a directional, highly anisotropic LiNbO3 etch, obtained using 
an ICP CF4 (6 sccm)/N2 (28 sccm)/O2 (0.5 sccm) etch. The etch is time multiplexed to 
prevent overheating of the sample. The number of cycles determines etch depth and each 
cycle consists of 1 minute etching in a 600 W plasma under 400 W bias. The etch rate of x-cut 
LiNbO3 is ~27 nm per minute and the selectivity between LiNbO3 and Cr is ~5.4:1. Any 
remaining Cr is stripped in a chemically selective wet etch. 
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