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Here we demonstrate a spectrally broadband, gigahertz-fast
Mach–Zehnder interferometric modulator exhibiting a minis-
cule VπL of 95 V · µm, deploying a subwavelength short
electrostatically tunable plasmonic phase shifter based on
heterogeneously integrated indium tin oxide thin films into
silicon photonics. © 2020 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.389437

Indium tin oxide (ITO), belonging to the class of transparent
conductive oxides, is a material extensively adopted in high-tech
industry such as in touchscreen displays of smartphones or contacts
for solar cells. Recently, ITO has been explored for electro-optic
modulation using its free-carrier dispersive effect enabling unity-
strong index modulation [1–3]. However, gigahertz (GHz)-fast
modulation capability using ITO is yet to be demonstrated—a
feature we show herein. Given the ubiquitous usage of phase-
shifter (PS) technologies, such as in data communication, optical
phased arrays, analog and RF photonics, sensing, and so on,
here we focus on a Mach–Zehnder interferometer (MZI)-based
modulator to demonstrate a comprehensive platform of hetero-
geneous integration of ITO-based opto-electronics into silicon
photonic integrated circuits (PIC). Since the real part of the opti-
cal refractive index (n) is of interest in PSs, in previous studies
we have shown the interplay between a selected optical mode
(e.g., photonic bulk versus plasmonic) and the material’s figure
of merit (1n/1α), where α is the optical loss, directly resultant
from Kramers–Kronig relations [4]. Additionally, ITO can be
selectively prepared (via process conditions [5]) for operating in
either an n-dominant or α-dominated region [4], demonstrating
a photonic-mode ITO-oxide-Si MZI on silicon photonics with
an efficient VπL= 0.52 V ·mm [2] and a plasmonic version
deploying a lateral gate exhibiting a VπL= 0.063 V ·mm [6].
Indeed, a plasmonic mode enables a strong light–matter interac-
tion (e.g., extrinsic slow-light effect), which, when superimposed
with ITO’s intrinsic slow-light effect, proximal epsilon-near-zero
(ENZ) effects [7], enables realization of just 1–3µm short PSs [4],
allowing small (∼fF) electrical capacitances for efficient and fast
signal modulation. Here we design the ITO material parameters

to control operation in the n-dominant region adequately close
to but not at the high-loss ENZ (ENZ located in the α-dominant
region) [4]. In fact, unlike lithium niobate (LN) optoelectron-
ics requiring careful crystal-orientation control [8,9], ITO thin
films are crystal-orientation independent and feature intrinsically
uniform optical characteristics as deposited. Here we discuss an
ITO-plasmon-based PS heterogeneously integrated into a silicon
photonic MZI delivering GHz-fast broadband modulation and
thus open opportunities for multispectral operation.

The base interferometer is taped out as a symmetric silicon-
on-insulator (SOI) MZI to minimize chirp effects induced by
different splitting ratios in the Y junctions of the MZI and includes
post-tape out loss balancing between both arms using a metallic
strip (Lb) on the nonmodulated arm to minimize extinction ratio
(ER) degradation [Fig. 1(a)]. Sweep of the active PS device length
(Ld ) ranges from sub-λ (1.4 µm) to λ-scale devices (3.5 µm)
[Fig. 1(b)]. Broadband spectral response is measured in the C
band [∼30 nm, Fig. 2(a)], which is expected since the plasmonic
resonance of the mode has a FWHM ∼100s of nanometers
(nm). The spectral response is determined by ITO dispersion and

Fig. 1. (a) Schematic of the broadband GHz plasmonic ITO-based
Mach–Zehnder modulator; (b) active device region, Ld ; tAu = 50 nm,
tox = 20 nm, tITO = 10 nm, w= 500 nm, h = 220 nm; corresponding
FEM eigenmode profiles to light ON and OFF states (inset); (c) optical
microscope image of the sub-λ (Ld = 1.4 µm) modulator.
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Fig. 2. (a) Optical transmission exhibiting broadband performance
of the modulator; (b) I-V measurements; (c) optical output modulation
under DC bias for different device scaling, where dashed lines represent
cos2(arg) fit dictated by Mach–Zehnder operating principle; (d) induced
effective index change 1neff and (e) ITO material index change 1nITO

from applied bias; (f ) experimental speed setup; and (g) measured
small-signal response S21 of the modulator.

proximity to the ENZ. For ultrabroadband applications (e.g.,
100+ nm) ITO modulators for different spectral regions (e.g.,
1λ= 50 nm) can be processed using different conditions [5].
Functional capacitor traits in the measured bias range are observed
[Fig. 2(b)]. DC electro-optic transmission power tests and squared
cosine fit (as dictated by MZI operating principle) result in an
ER of ∼3 to > 8dB, respectively [Fig. 2(c)]. The measured VπL
is just 95± 2 V · µm and rather constant across all device scal-
ing. The results indicate a modal index change 1neff of ∼0.2
[Fig. 2(d)], and FEM eigenmode analysis [inset, Fig. 1(b)] reveals
an ITO index change of about 0.6 [Fig. 2(e)] reflecting an ∼2×
increased confinement factor (0) corresponding to active biasing,
slightly lower than previous ITO modulators [2], and intentionally
enabling lower insertion loss (IL) of about 6.7 dB. Cutback mea-
surements reveal 1.6 dB/µm propagation loss in the active region
and an additional 1.3 dB/coupling loss from in/out coupling of
the mode from the Si waveguide, while the passive loss balancing
contact [Fig. 1(a), Lb] exhibits a 1.2 dB/µm propagation loss and
1.1 dB/coupling loss, correspondingly. Note that the high loss per

unit length in plasmonics is alleviated by an enhanced light–matter
interaction enabling λ-short device lengths (Ld ); thus the total IL
is comparable to Si photonic MZIs. The deposited ITO thin film
carrier concentration Nc of 3.1× 1020 cm−3 is determined from
metrology, and a change1Nc = 2.1× 1020 cm−3 estimated from
the gated measurements suggests n-dominant operation, however
intentionally away from the high-loss ENZ (6− 7× 1020 cm−3)
state, yet sufficiently near to capture a slow-light effect [4].

Frequency response (S21) is obtained by generating a low power
modulating signal (0 dBm) with a 50 GHz network analyzer; a
bias tee combines DC voltage (6 V) with the RF signal [Fig. 2(f )].
RF output from the modulator is amplified using a broadband
erbium-doped fiber amplifier (EDFA, ∼35 dB), and an optical
tunable filter reduces undesired noise by 20 dB. The modulated
light is collected by a photodetector. The −3 dB roll-off (small
signal) shows a speed of 1.1 GHz [Fig. 2(g)], which matches esti-
mations for the RC delay given capacitance of 213 fF and total
resistance of 680 �, while dynamic switching energy (∼pJ) char-
acterizes the spectral trade-off [2]. Performance comparison of this
ITO paradigm with recent modulators shows similar achievable
speeds, allowing for CMOS low drive voltages and competent
VπL enabled by efficient electrostatics (tox = 5 nm, Hf3N4, pad-
overlay optimization, annealing, plasma treatment), which is
fundamentally challenging in LN due to its delicate loss sensitivity
(Table 1).

This GHz-fast broadband integrated modulator bears relevance
since ITO is a foundry-compatible material. Unlike the crystal-
orientation-sensitive LN, ITO optoelectronics is synergistic to
enhancing electrostatics known from transistor technology.
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