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Introduction 
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High-speed high-efficiency (=responsivity) photodiodes are key components 

in low-power optical interconnects.  

 

• Reduced photodiode (PD) capacitance benefits high-speed PD – 

transimpedance amplifier (TIA) and enables ‘amplifier-free’ front end. 

 

• Operate photodiode at low bias: low dark current and minimized (standby) 

power consumption. 

 

• Integration on silicon photonics platform  

High-speed InGaAs/InP modified uni-traveling carrier (MUTC) 

photodiodes on silicon: 

- Wafer bonded MUTC PD on silicon-on-insulator (SOI) waveguide 

 

- Back-illuminated MUTC PD on Si using adhesive wafer-bonding 

 

- MUTC PD on silicon using direct epitaxial growth 
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InP-Based Photodiodes 

• High material quality:  

low dark current. 

• Direct bandgap:  

large absorption 

• Lattice-matched compounds 

InGaAsP, AlGaInAs: 

absorptive and transparent 

layers between 1.65 m and 

0.92 m (Bandgap Engineering) 

• High electron drift velocity: 

High speed >100 GHz. 
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Charge-Compensated Modified Uni-Traveling Carrier PD 

(MUTC PD) 
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undepleted

InGaAs

absorber

InP drift layer

InP cliff layer depleted InGaAs

absorber

e 

Absorber 

Collector “Cliff” layer 

Transition layers 

1. Charge compensated collector to suppress 

space charge field at high current 

2. “Cliff” layer to maintain high field in depleted 

absorber and achieve high speed 

3. Partially depleted absorber    - Maintain high field   

    across heterojunction interface    - Increase  

    responsivity without sacrificing speed 
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Discrete MUTC Photodiodes: RF Output Power 
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Flip-chip bonded on diamond 
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Capacitance: MUTC vs. p-i-n 
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Ve = 2.3 x 107 cm/s 

Ve = 0.65 x 107 cm/s 

4 x 4 um2 

K. Williams (2002) 

A: PD area 

d: depletion width 

v: carrier velocity  

𝐵𝑊 =
3.5 𝑣

2 𝜋 𝑑
 

4 x 4 um2 
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Low-Capacitance Photodiode   

S. Bowers and A. Beling EuMW 2017 

Balanced PD w/ 130 nm CMOS TIA: 

• A receiver-less optical front end (w/o amplifier) becomes 

feasible (D.A.B. Miller, M. Wu, Nozaki, NTT)  

 

• In PD – TIA front end:  

bandwidth, noise, and power consumption frequently benefit 

from smaller PD capacitance. 
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100 GHz MUTC PD Epi-Layer Design 
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InGaAs, p+, Zn, 2x1019, 50nm 

InP, p+, Zn, 2x1018, 100nm 

InGaAsP,Q1.1, p+, Zn, 2x1018, 10nm 

InGaAsP,Q1.4, p+, Zn, 2x1018, 10nm 

InGaAs, p+, Zn, 2x1018, 50nm 

InGaAs, p+, Zn, 1x1018, 50nm 

InGaAs, p+, Zn, 5x1017, 50nm 

InGaAs, n-, Si, 1x1016, 30nm 

InGaAsP, Q1.4, n-, Si, 1x1016, 10nm 

InGaAsP,Q1.1, n-,  Si, 1x1016, 10nm 

InP, n-, Si, 3x1017, 30nm 

 InP, n-, Si, 1x1016, 300nm 

InP, n+, Si, 1.0x1018, 100nm 

InP, n+, Si, 1.0x1019, 1000nm  

InP, semi-insulating substrate, 

150 nm undepleted 

absorber  

300 nm collector layer 

30 nm cliff layer 

30 nm depleted absorber  

band-gap smooth layer 

band-gap smooth layer 

P 

N 

Q. Li et al., IPC 2015  
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Bandwidth 
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PDs with different areas at 10 mA 

and 4 V: 

• s 

Responsivity: 0.17 A/W 

 

Bandwidth-efficiency product: 15 GHz 
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Frequency Response 5-m diameter PD 
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Previous submount with  

inductive peaking. 

208 pH  

New submount with  

reduced inductive peaking. 

105 pH 

(all other parameters identical) 

  

Proposed submount with  

negligible inductive peaking. 

4 pH  

(all other parameters identical) 

o   measured 
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-28 dB  

at 300 GHz 

-19 dB  

at 300 GHz 

  modeling 

Frequency [GHz] 

-13 dB  

at 300 GHz 

o   measured 

  modeling 
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PD Capacitance 
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Measured and fitted S11 data  

5 µm  

10 MHz ~ 100 GHz 

Q. Li et al., JLT 2016  

Photonics West 2018 

Waveguide MUTC PD 
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Optical matching layer 

Lower cladding               

InP 

Higher Bandwidth-Efficiency product since responsivity  

and transit-time limited bandwidth are decoupled. 

 
 

Key component in photonic integrated circuits (PICs). 
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Design Waveguide MUTC Photodiode 
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Epitaxial 

SEM of fabricated PDs 

Extended 

 n-mesa 

Li et al. IPC, 2017 
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High-Speed Waveguide MUTC PD 
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105 GHz 

• 105 GHz bandwidth and 0.35 A/W  

• 30 GHz bandwidth-efficiency product  

Li et al. JLT 2017 
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Waveguide MUTC PD 

15 Zhou et al. JLT 35(4), 2017 

Fiber-coupled responsivity: 0.5 A/W 
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Waveguide MUTC PD 

16 Zhou et al. JLT 35(4), 2017 

Bandwidth: 80 GHz 

High linearity: Output third-order 

intercept (OIP3): 20 dBm @60 GHz 

Bandwidth – efficiency product:   

32 GHz 
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Heterogeneously Integrated III-V Photodiodes on Silicon 

With the rapid progress in Si photonics there has been increased 

interest in silicon-compatible high-performance waveguide 

photodiodes that operate at the long telecommunication wavelengths. 

Make InP-based devices available to large-scale integrated circuits on 

a silicon photonics-electronics platform for applications in 

communications, optical interconnects, and microwave photonics. 

 

 

Heterogeneous integration:  

•  bandgap engineering 

•  absorption in C- and L-band 

•  low dark current 

•  high dynamic range, high-  

  linearity 
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Integration Schemes  
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Si 

BOX 

III-V PD Buffer 
layer 

Si 

BOX 

III-V PD 

Selective-area growth (MOCVD) on 

InP/GaAs buffer.  

Idark = 400 A (5 V), BW = 15 GHz.  

(Geng et al. 2014) 

Butt-coupled to SOI waveguide: 

Si waveguide 

Vertically illuminated PD attached to waveguide 

by epoxy. 

IL = 5 dB, BW = 28 GHz. 

(Zimmermann et al. 2012) 

Etched or polished reflective mirror:  

Si 

BOX 

III-V PD 

Grating 

Bonding 
layer 

Vertical coupling grating:  

Adhesive bonding with BCB or 

epoxy  

Idark  (1 V) = 0.3 nA, R = 0.02 A/W. 

(Roelkens et al. 2005)  
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Integration Schemes (2) 
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Si 

BOX 

III-V PD Bonding 
layer 

Adiabatic taper:  

Tapered InP membrane input waveguide 

BW = 33 GHz R = 0.45 A/W. 

(Binetti et al. 2010)  

Evanescent coupling:  

Quantum well p-i-n PD. 

Idark = 100 nA (2 V), R = 0.31 A/W. 

(Park et al. 2007)  

Si 

BOX 

III-V PD Si waveguide Bonding 
layer 

Direct (molecular) bonding or adhesive bonding:  

Photonics West 2018 

40 GHz High-Power PD on SOI 

20 
Xie et al. OFC 2015 PDP 

 III-V epi structure is transferred to the 

patterned Si through low-temperature 

oxygen-plasma-assisted wafer bonding 

(UCSB/Aurrion process). 

10 nA at 5 V 

 >45 GHz BW 

+12 dBm at 40 GHz 

Rint: 0.95 A/W  
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Heterogeneous PD on SOI with inverted layer structure  

PD with p-contact on top: 

1) Better process compatibility  

2) Lower heat resistance by placing heat 

source close to SOI substrate 

3) High n-type doping levels can be achieved 

in InP (>1e1019 cm-3)  

14 

n 

i 

p 

low index 

- drift layer 

Issue: Evanescent coupling 

through low index drift layer 

is not efficient. 

Waveguide 

absorber 
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PD on SOI Nano-Waveguide 
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Nano-waveguide before  

III-V bonding 

Weakly confined  

mode couples 

into mesa PD 

Heterogeneous integration: Ability to independently change the widths of the 

Si waveguide and the III-V mesa to engineer the absorption profile.  

• Si nano-waveguide: Engineer the confinement factor for optimum 

absorption profile 

• High efficiency, large dynamic range 

Wang et al. IPC 2016 
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PD Characterization 
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Pad capacitance 13 fF 

Junction capacitance for a PD 

with 30 µm2 area is only 5 fF. 

Dark current: 1 nA at -3 V 

Internal 

responsivity at 

1550 nm:  

0.84 A/W  for 50 

µm-long PD 

Wang et al. JSTQE 2018 
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PD Characterization 
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BW: 65 GHz 

Bandwidth: 65 GHz 

Large dynamic range:  

20 mA photocurrent 
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Heterogeneous integration on Si using adhesive bonding 

• III-V PD on Si using  low-temperature adhesive bonding (SU8) process 

• SU8 layer thickness is only 290 nm (will work for waveguide PDs)  

• MUTC-structure bonded, substrate removal, low-dark current top-

illuminated PDs fabricated 
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Back-illuminated MUTC PD on Si 

26 
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Experimental Results 
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 Fundamental

 IMD3 15mA 9 GHz

 IMD3 10mA 9 GHz

 IMD3 5mA 9 GHz

 IMD3 15mA 1 GHz

 IMD3 10mA 1 GHz

 IMD3 5mA 1 GHz
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Photocurrent (mA)Input power  [dBm] 

• 0.48 A/W responsivity at 1550 nm (no ARC) 

• Bandwidth: 18 GHz 

• OIP3 up to 28.5 dBm  
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InAlAs p-i-n 

InAlAs MUTC 

Si template InP p-i-n 

PD III-V epi-structures grown on Si 

28 
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PD fabrication 
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Results 

• Dark current as low as 4 nA at -3 V. 

• No difference to PDs grown on native 

InP substrate  

• Dark current density: 1.3 mA/cm2 

Sun et al. IPC 2017 
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Dark I-V and C-V 
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Responsivity  
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• 0.8 A/W at 1550 nm 

• No difference in responsivity between p-i-n on Si and p-i-n on InP  
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Bandwidth 
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Bandwidth: 9 GHz 

 

Limited by high (ring-) 

contact resistance. 
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PD linearity: Output third-order intercept (OIP3)  

34 

OIP3 > 15 dBm. 
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Overview top-illuminated PDs on Si  

1.3 
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Outlook: Zero-bias GaAs0.5Sb0.5/InP MUTC 

• Eliminates band discontinuities 

• Moderate E-field causes velocity overshoot 

•   Highest BW at 0 V 

MUTC 

MUTC bandwidth limitations at 

low bias: 

• Drift layer not (fully) depleted 

• Band discontinuities at 

heterointerface  
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• High-efficiency photodiodes on both, InP and SOI, up to  

105 GHz bandwidth have been demonstrated. 

• Waveguide PDs on SOI: Low dark current 1 nA, low 

capacitance 5 fF, high responsivity 0.84 A/W, and bandwidth 

up to 65 GHz 

• InGaAs/InP photodiodes on silicon using direct epitaxial 

growth have dark current density of 1.3 mA/cm2 and a 

responsivity of 0.8 A/W. 


